40 research outputs found

    The Largest Fullerene

    Full text link
    Fullerenes are lowest energy structures for gas phase all-carbon particles for a range of sizes, but graphite remains the lowest energy allotrope of bulk carbon. This implies that the lowest energy structure changes nature from fullerenes to graphite or graphene at some size and therefore, in turn, implies a limit on the size of free fullerenes as ground state structures. We calculate this largest stable single shell fullerene to be of size N=1×104N=1\times10^4, using the AIREBO effective potential. Above this size fullerene onions are more stable, with an energy per atom that approaches graphite structures. Onions and graphite have very similar ground state energies, raising the intriguing possibility that fullerene onions could be the lowest free energy states of large carbon particles in some temperature range

    Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    Full text link
    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C24_{24}H12+m+_{12+m}^+ m=07m=0-7, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16_{16}H10+m+_{10+m}^+, m=0m=0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.Comment: 10 pages, 5 figure

    The Structure of Coronene Cluster Ions Inferred from H2 Uptake in the Gas Phase

    Get PDF
    Mass spectra of helium nanodroplets doped with H2 and coronene feature anomalies in the ion abundance that reveal anomalies in the energetics of adsorption sites. The coronene monomer ion strongly adsorbs up to n = 38 H2 molecules indicating a commensurate solvation shell that preserves the D6h symmetry of the substrate. No such feature is seen in the abundance of the coronene dimer through tetramer complexed with H2; this observation rules out a vertical columnar structure. Instead we see evidence for a columnar structure in which adjacent coronenes are displaced in parallel, forming terraces that offer additional strong adsorption sites. The experimental value for the number of adsorption sites per terrace, approximately six, barely depends on the number of coronene molecules. The displacement estimated from this number exceeds the value reported in several theoretical studies of the bare, neutral coronene dimer

    Complexes with Atomic Gold Ions:Efficient Bis-Ligand Formation

    Get PDF
    Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, a diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, dicyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, dicyclopentadiene, and fullerene. For most ligands L, the abundance distribution of AuLn+ versus size n displays a remarkable enhancement at n = 2. The propensity towards bis-ligand formation is attributed to the formation of covalent bonds in Au+L2 which adopt a dumbbell structure, L-Au+-L, as previously found for L = Xe and C60. Another interesting observation is the effect of gold on the degree of ionization-induced intramolecular fragmentation. For most systems gold enhances the fragmentation, i.e., intramolecular fragmentation in AuLn+ is larger than in pure Ln+. Hydrogen, on the other hand, behaves differently, as intramolecular fragmentation in Au(H2)n+ is weaker than in pure (H2)n+ by an order of magnitude

    Improving the creation and management of collaborative networks within the European maritime sector : an operational collaboration model for the European maritime sector

    Get PDF
    The first ever model of operational collaboration for the European maritime industry is presented, built upon the established current state-of-the art in engineering collaboration modelling and addressing key industry requirements. The requirements for operational collaboration practices in the European maritime industry were identified using three approaches: an industrial survey of 69 associations, companies and institutions in the maritime sector; an analysis of prototype collaboration tools; and through an analysis of literature. These requirements were thematically grouped and consolidated where they overlapped, and then translated into model elements and interactions between them. A model that accurately abstracts service and technology collaboration provision between companies in a variety of collaboration modes was built, and validated against a series of steps that an organisation would need to undertake, to develop a particular mode of collaboration to supports their needs. It was tested in three industrial case studies, providing encouraging feedback demonstrating successful implementation. It provides the opportunity for reassessment of the employed processes and activities, and provides a structure for improving collaborative engineering design. Whilst the research was based in the European maritime industry, the model has wider applicability within the collaborative design of complicated engineering artefacts such as automotive or aerospace
    corecore